翻訳と辞書
Words near each other
・ Miltochrista decussata
・ Miltochrista delicata
・ Miltochrista delicia
・ Miltochrista delineata
・ Miltochrista dentata
・ Milson, Shropshire
・ Milsons Passage, New South Wales
・ Milsons Point (Lavender Bay sites) railway stations
・ Milsons Point ferry wharf
・ Milsons Point railway station
・ Milsons Point, New South Wales
・ Milstar
・ Milstead
・ Milstead (surname)
・ Milstein
Milstein method
・ Milston
・ MilSuite
・ Milt
・ Milt Bernhart
・ Milt Black
・ Milt Bocek
・ Milt Bolling
・ Milt Bruhn
・ Milt Buckner
・ Milt Byrnes
・ Milt Campbell
・ Milt Carthens
・ Milt Crain
・ Milt Cuyler


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Milstein method : ウィキペディア英語版
Milstein method
In mathematics, the Milstein method is a technique for the approximate numerical solution of a stochastic differential equation. It is named after Grigori N. Milstein who first published the method in 1974.
==Description==
Consider the autonomous Itō stochastic differential equation
:\mathrm X_t = a(X_t) \, \mathrm t + b(X_t) \, \mathrm W_t,
with initial condition ''X''0 = ''x''0, where ''W''''t'' stands for the Wiener process, and suppose that we wish to solve this SDE on some interval of time (). Then the Milstein approximation to the true solution ''X'' is the Markov chain ''Y'' defined as follows:
* partition the interval () into ''N'' equal subintervals of width \Delta t>0:
:0 = \tau_0 < \tau_1 < \dots < \tau_N = T\text\tau_n:=n\Delta t\text\Delta t = \frac;
* set Y_0 = x_0;
* recursively define Y_n for 1 \leq n \leq N by
:Y_ = Y_n + a(Y_n) \Delta t + b(Y_n) \Delta W_n + \frac b(Y_n) b'(Y_n) \left( (\Delta W_n)^2 - \Delta t \right),
where b' denotes the derivative of b(x) with respect to x and
:\Delta W_n = W_
are independent and identically distributed normal random variables with expected value zero and variance \Delta t. Then Y_n will approximate X_ for 0 \leq n \leq N, and increasing N will yield a better approximation.
Note that when b'(Y_n) = 0 , i.e. the diffusion term does not depend on X_ , this method is equivalent to the Euler–Maruyama method
The Milstein scheme has both weak and strong order of convergence \Delta t, which is superior to the Euler–Maruyama method, that has the same weak order of convergence \Delta t, but inferior strong order of convergence \sqrt.〔V. Mackevičius, ''Introduction to Stochastic Analysis'', Wiley 2011〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Milstein method」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.